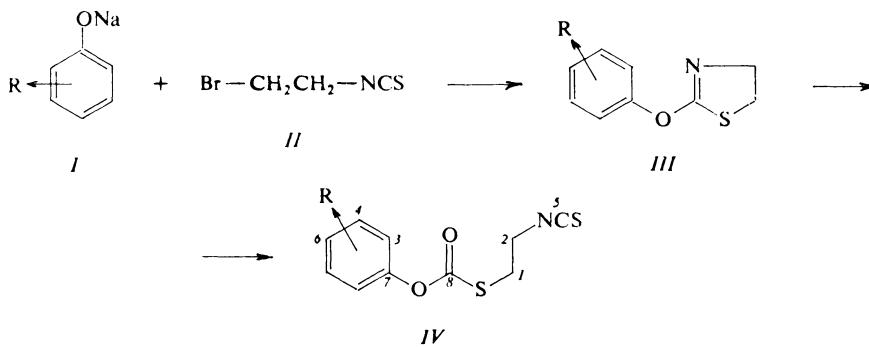


SYNTHESIS OF 2-(S-ARYLOXYCARBONYLTHIO)ETHYL ISOTHIOCYANATES — ANALOGUES OF NATURAL MUSTARD OILS

Pavol KRISTIAN and Jozef GONDA


Department of Organic Chemistry and Biochemistry,
P. J. Šafárik University, 041 67 Košice

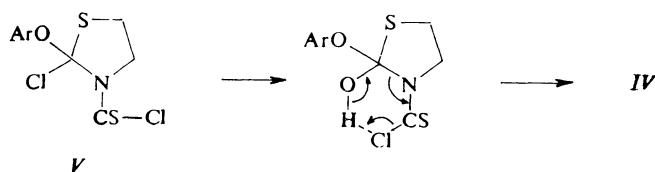
Received January 3rd, 1983

A simple reaction of 2-aryloxythiazolines with thiophosgene leads to formation of 2-(S-aryloxycarbonylthio)ethyl isothiocyanates. The starting thiazolines can easily be obtained from 2-bromoethyl isothiocyanates and phenolates. The structure of the products synthesized was evidenced by spectral methods.

Hull and coworkers¹⁻⁴ studied the reaction of thiophosgene with a C=N bond of aromatic heterocycles related to pyridine and imidazole affording isothiocyanates with the NCS group attached to an sp^2 carbon.

This paper reports a modification of this reaction for the synthesis of biologically active isothiocyanates of glucosinolate type⁵ from 2-aryloxythiazolines *III*. The latter can easily be prepared from 2-bromoethyl isothiocyanate *II* with phenolates *I* in benzene according to the method for the synthesis of 2-alkoxythiazolines and 2-aminothiazolines^{6,7} (Table I). The obtained thiazolines react with thiophosgene in chloroform or dichloromethane in the presence of water and a base (CaCO₃, BaCO₃, NaOH) at 0–30°C to furnish 2-(S-phenoxycarbonylthio)ethyl isothiocyanates *IV* in high yields (Table II, Scheme 1). The reaction proceeds presumably *via* an addition intermediate of thiophosgene to the C=N bond to give α -chlorothio-

SCHEME 1


carbamoyl chloride *V*. Analogous addition compounds were isolated with Schiff bases^{8,9}. Decomposition of the addition product *V* in an alkaline medium is shown in Scheme 2.

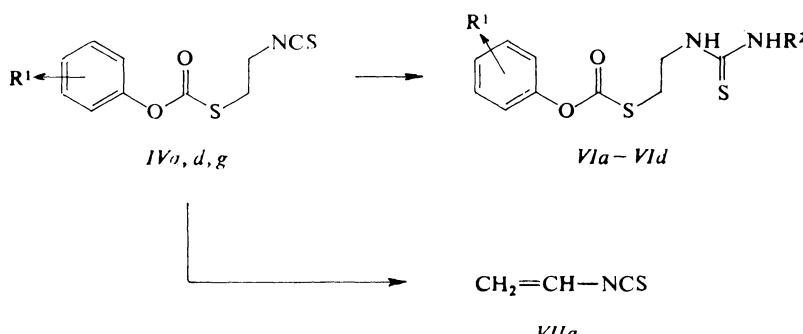
The structure of isothiocyanates *IV* was corroborated by analytical and spectral methods. The IR spectra displayed characteristic absorption bands of CO and NCS groups at 1 725 and 2 075 cm⁻¹, respectively. The mass spectrum of compound *IVa*, the ¹³C NMR spectrum of *IVg* are in accordance with the structure anticipated (Table II).

TABLE I
2-Aryloxythiazolines *IIIa*—*IIIi*

Product R	Yield %	B.p. (°C/0.1 kPa) IR (cm ⁻¹) ν(C≡N)	Formula (M _r) ^{a,b}	Calculated/Found		
				% C	% H	% N
<i>IIIa</i> H	72	110—113 1 630	C ₉ H ₉ NOS (179.1)	60.33 60.13	5.02 3.98	7.82 7.62
<i>IIIb</i> 2-CH ₃	74	127—130 1 631	C ₁₀ H ₁₁ NOS (193.2)	62.17 61.99	5.69 5.65	7.24 7.20
<i>IIIc</i> 3-CH ₃	67	120—123 1 634	C ₁₀ H ₁₁ NOS (193.2)	62.17 62.13	5.69 5.54	7.24 7.25
<i>IIId</i> 4-CH ₃	72	122—125 1 629	C ₁₀ H ₁₁ NOS (193.2)	62.17 62.40	5.69 5.66	7.24 7.24
<i>IIIf</i> 2-Cl	57	126—128 1 635	C ₉ H ₈ ClNOS (213.6)	50.60 51.05	3.74 3.38	6.55 6.35
<i>IIIf</i> 3-Cl	68	129—131 1 632	C ₉ H ₈ ClNOS (213.6)	50.60 50.85	3.74 3.48	6.55 6.34
<i>IIIf</i> 4-Cl	87	137—139 1 630	C ₉ H ₈ ClNOS (213.6)	50.60 50.35	3.74 3.81	6.55 6.50
<i>IIIf</i> 4-CH ₃ O	61	147—150 1 633	C ₁₀ H ₁₁ NO ₂ S (209.1)	57.42 57.13	5.25 5.28	6.69 6.75
<i>IIIf</i> 4-Br	81	140—143 1 632	C ₉ H ₈ BrNOS (258.0)	41.88 41.49	3.10 3.15	5.42 5.45

^a The ¹H NMR spectra of thiazolines display characteristic signals of CH₂ protons at δ 3.45—3.50 (t) and 4.00—4.05 ppm (t), and at 6.77—7.49 ppm (m, protons at an aromatic ring); ^b measured in chloroform.

SCHEME 2


TABLE II
2-(S-Aryloxycarbonylthio)ethyl isothiocyanates *IVa*–*IVi*

Product R	Formula ^a (<i>M</i> _r)	Yield, % b.p., °C/0.3 Pa	Calculated/Found				<i>v</i> CO ^b <i>v</i> NCS
			% C	% H	% N	% S	
<i>IVa</i> ^c H	C ₁₀ H ₉ NO ₂ S ₂ (239.3)	82 138–140	50.19 50.04	3.76 3.78	5.85 5.80	26.74 26.80	1 722 2 075
<i>IVb</i> 2-CH ₃	C ₁₁ H ₁₁ NO ₂ S ₂ (253.3)	81 137–140	52.15 52.20	4.38 4.39	5.53 5.55	25.31 25.30	1 725 2 070
<i>IVc</i> 3-CH ₃	C ₁₁ H ₁₁ NO ₂ S ₂ (253.3)	76 145–148	52.15 52.18	4.38 4.40	5.53 5.49	25.31 25.29	1 720 2 081
<i>IVd</i> 4-CH ₃	C ₁₁ H ₁₁ NO ₂ S ₂ (253.3)	79 143–145	52.15 52.10	4.38 4.35	5.53 5.55	25.31 25.33	1 723 2 078
<i>IVe</i> 2-Cl	C ₁₀ H ₈ ClNO ₂ S ₂ (273.8)	66 155–156	43.87 43.59	2.92 2.68	5.11 5.22	23.38 23.07	1 727 2 078
<i>IVf</i> 3-Cl	C ₁₀ H ₈ ClNO ₂ S ₂ (273.8)	78 165–167	43.87 53.62	2.92 2.83	5.11 5.10	23.38 23.41	1 728 2 080
<i>IVg</i> ^d 4-Cl	C ₁₀ H ₈ ClNO ₂ S ₂ (273.8)	86 —	43.87 43.56	2.92 2.91	5.11 4.69	23.38 23.13	1 726 2 079
<i>IVh</i> 4-CH ₃ O	C ₁₁ H ₁₁ NO ₃ S ₂ (269.3)	80 152–155	49.05 48.95	4.08 4.07	5.19 4.99	23.76 23.54	1 727 2 080
<i>IVi</i> ^d 4-Br	C ₁₀ H ₈ BrNO ₂ S ₂ (318.2)	85 —	37.74 37.68	2.51 2.50	4.39 4.37	20.11 20.21	1 726 2 078

^a The ¹H NMR spectra of isothiocyanates display characteristic signals of CH₂ protons at δ 3.12 to 3.17 (t), and 3.76–3.78 ppm (t), as well as at δ 6.98–7.42 ppm (m, C—H_{arom}); ^b values in cm^{−1}, measured in chloroform; ^c mass spectrum, *m/z* (assignment, % of intensity): 239 (M⁺, 23), 211 (M—CO⁺, 51), 146 (M—C₆H₅CO⁺, 100), 86 (M—C₆H₅CO₂S⁺, 96), ¹³C NMR spectrum (C²HCl₃), δ , ppm: 29.5 C₍₁₎, 42.8 C₍₂₎, 120.6 C₍₃₎, 127.7 C₍₄₎, 128.1 C₍₅₎, 129.9 C₍₆₎, 147.5 C₍₇₎, 166.9 C₍₈₎, *cf.* Scheme 1; ^d m.p. *IVg* 39–41°C, *IVi* 27–30°C.

Compounds *IVa*–*VIi* afforded with amines (ammonia, *p*-toluidine, *p*-anisidine) exclusively thioureas *VIa*–*VId* (Table III, Scheme 3), although they possess two electrophilic centres (CO, NCS). Compound *IVa* gave vinyl isothiocyanate (*VIIa*) upon heating in dichlorobenzene in a low yield.

The synthesized isothiocyanates exhibited high antimicrobial activity mainly towards yeasts (*Candida albicans*, *Saccharomyces cerevisiae*; MIC $1 \cdot 10^{-5}$ to $1 \cdot 10^{-3} \text{ mol l}^{-1}$) and molds (*Aspergillus niger*, *Penicillium cyclopium*, *Rhizopus oryzae*; MIC $1 \cdot 10^{-4}$ to $1 \cdot 10^{-3} \text{ mol l}^{-1}$).

SCHEME 3

TABLE III
N-Aryl-N'-2-(S-phenoxy carbonylthioethyl)thioureas *VIa*–*VId*

Product	R ¹ R ²	Formula (M _r)	M.p., °C yield, %	CO ^a NH	Calculated/Found		
					% C	% H	% N
<i>VIa</i>	4-CH ₃ H	C ₁₁ H ₁₄ N ₂ O ₂ S ₂ (270.3)	122–123 87	1 700 3 500, 3 350	48.87 48.89	5.22 5.25	10.36 10.35
<i>VIb</i>	H 4-CH ₃ C ₆ H ₄	C ₁₇ H ₁₈ N ₂ O ₂ S ₂ (346.4)	112–113 95	1 720 3 405	58.93 58.90	5.24 5.20	8.09 8.10
<i>VIc</i>	4-CH ₃ 4-CH ₃ OC ₆ H ₄	C ₁₈ H ₂₀ N ₂ O ₃ S ₂ (376.5)	148–149 90	1 719 3 402	57.42 57.44	5.35 5.38	7.44 7.46
<i>VID</i>	4-Cl 4-CH ₃ C ₆ H ₄	C ₁₇ H ₁₇ N ₂ ClO ₂ S ₂	140–141 76	1 722 3 405	53.60 53.63	4.50 4.51	7.35 7.37

Values cm^{-1} , measured in chloroform.

EXPERIMENTAL

Spectral Measurements

The IR spectra were measured with a Specord 75 IR (Zeiss, Jena) spectrophotometer, the ^1H and ^{13}C NMR spectra of deuteriochloroform solutions containing tetramethylsilane were recorded with a Tesla BS 407 A (80 MHz) and Tesla BS 567 (15.15 MHz) apparatuses, respectively. The multiplicity of signals was ascribed by the ^1H -off-resonance technique. The mass spectrum was run with an LKE 9000 instrument by a direct evaporation into the ion source at 70 eV ionization energy.

2-Phenoxythiazolines *IIIa*—*IIIi*

2-Bromoethyl isothiocyanate *II* (50 mmol) was added to a solution of the phenolate *Ia*—*Ii* (50 mmol) in benzene (70 ml). The mixture was refluxed for 3 h, cooled and the insoluble salts were filtered off. Benzene was evaporated under reduced pressure and the residue was vacuum-distilled.

2-(S-Aryloxycarbonylthio)ethyl Isothiocyanates *IVa*—*IVi*

A solution of thiophosgene (5.75 g, 50 mmol) in dichloromethane (70 ml) was added to a suspension of CaCO_3 (10 g) in water (100 ml) at 0—5°C. A solution of the respective thiazoline (50 ml) in dichloromethane (40 ml) was added during 20 min into the stirred suspension at this temperature, and the stirring was continued for 1 h at 0—5°C, and at room temperature for additional 3 h. The organic layer was separated, dried with MgSO_4 and distilled off. The residue was purified either by a distillation under diminished pressure, or by chromatography on a silica gel column using chloroform as an eluent.

N-Aryl-N'-2-(S-phenoxy carbonylthioethyl)thioureas *VIb*—*VId*

p-Toluidine, or *p*-anisidine (10 mmol) in ether (20 ml) was added to a solution of *IVa, d, g* (10 mmol) in ether (20 ml). The mixture was stirred for 5 h, ether was distilled off under reduced pressure, and the residue was purified by thin-layer chromatography on silica gel LSL₂₅₄ to which 7% of plaster was added (glass plates 25 × 20 cm, coating 3 mm, eluent chloroform). R_F Values of the respective compounds are: *VIb* 0.72, *VIc* 0.35, *VID* 0.31 (chloroform).

N-2-(S-Phenoxy carbonylthioethyl)thiourea (*VIa*)

A slow stream of gaseous ammonia was introduced into an ethereal solution of isothiocyanate *IVd* (2.53 g, 10 mmol). The solvent was evaporated after 2 h and the residue, crystallized from chloroform-light petroleum, had m.p. 139—141°C. The analytical sample having m.p. 140 to 141°C was obtained by thin-layer chromatography on silica gel similarly as with *VIb*—*VID*. Its R_F was found to be 0.2.

Thermal Decomposition of *IVa*

A solution of *IVa* (5 g, 25 mmol) in 1,2-dichlorobenzene (50 ml) was refluxed under nitrogen for 2 h, cooled, washed with dilute sodium carbonate solution and water, dried and fractionally distilled. Yield 0.25 g (12%) of *VII*, b.p. 51—62°C/15 kPa or 46°C/13 kPa.

Our thanks are due to Dr F. Greipelová, Institute of Chemistry, Comenius University, Bratislava, for elemental analyses and to the Department of Mass Spectra, Prague Institute of Chemical Technology, Prague, for recording the mass spectrum.

REFERENCES

1. Hull R.: J. Chem. Soc. C 1968, 1977.
2. Boyle F. T., Hull R.: J. Chem. Soc., Perkin I 1974, 1541.
3. Hull R.: Syn. Commun. 9, 477 (1977).
4. Hull R., Seden T. P.: Syn. Commun. 10, 489 (1980).
5. Drobnička L., Kristian P., Augustin J.: *The Chemistry of Cyanates and their Thio Derivatives* (S. Patai, Ed.), p. 1007. Wiley-Interscience, New York 1977.
6. Heakler R. E., Balko T. W.: Syn. Commun. 5, 143 (1975).
7. Woodgate P. D., Lee H. H., Ruthledge P. S., Cambie R. C.: Heterocycles 7, 109 (1977).
8. Martvoň A., Uher M., Stankovský Š.: This Journal 42, 745 (1977).
9. Jones G. D., Zimmerman R. L.: U.S. 2 757 190; Chem. Abstr. 50, 15 129 (1956).

Translated by Z. Votický.